Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 30(5): 1501-10, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24307498

RESUMO

The filamentous fungus Aspergillus terreus secretes both invertase and ß-glucosidase when grown under submerged fermentation containing rye flour as the carbon source. The aim of this study was to characterize the co-purified fraction, especially the invertase activity. An invertase and a ß-glucosidase were co-purified by two chromatographic steps, and the isolated enzymatic fraction was 139-fold enriched in invertase activity. SDS-PAGE analysis of the co-purified enzymes suggests that the protein fraction with invertase activity was heterodimeric, with subunits of 47 and 27 kDa. Maximal invertase activity, which was determined by response surface methodology, occurred in pH and temperature ranges of 4.0-6.0 and 55-65 °C, respectively. The invertase in co-purified enzymes was stable for 1 h at pH 3.0-10.0 and maintained full activity for up to 1 h at 55 °C when diluted in water. Invertase activity was stimulated by 1 mM concentrations of Mn²âº (161 %), Co²âº (68 %) and Mg²âº (61 %) and was inhibited by Al³âº, Ag⁺, Fe²âº and Fe³âº. In addition to sucrose, the co-purified enzymes hydrolyzed cellobiose, inulin and raffinose, and the apparent affinities for sucrose and cellobiose were quite similar (K(M) = 22 mM). However, in the presence of Mn²âº, the apparent affinity and V(max) for sucrose hydrolysis increased approximately 2- and 2.9-fold, respectively, while for cellobiose, a 2.6-fold increase in V(max) was observed, but the apparent affinity decreased 5.5-fold. Thus, it is possible to propose an application of this multifunctional extract containing both invertase and ß-glucosidase to degrade plant biomass, thus increasing the concentration of monosaccharides obtained from sucrose and cellobiose.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , beta-Frutofuranosidase/isolamento & purificação , beta-Frutofuranosidase/metabolismo , beta-Glucosidase/isolamento & purificação , beta-Glucosidase/metabolismo , Aspergillus/classificação , Biomassa , Celobiose/metabolismo , Estabilidade Enzimática , Proteínas Fúngicas/química , Inulina/metabolismo , Cinética , Multimerização Proteica , Rafinose/metabolismo , Microbiologia do Solo , Sacarose/metabolismo , Temperatura , beta-Frutofuranosidase/química , beta-Glucosidase/química
2.
J Microencapsul ; 30(7): 624-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23489014

RESUMO

Microbial enzymes have been used for various biotechnological applications; however, enzyme stabilization remains a challenge for industries and needs to be considered. This study describes the effects of spray-drying conditions on the activity and stability of ß-fructofuranosidase from Fusarium graminearum. The extracellular enzyme ß-fructofuranosidase was spray dried in the presence of stabilizers, including starch (Capsul) (SC), microcrystalline cellulose (MC), trehalose (TR), lactose (LC) and ß-cyclodextrin (CD). In the presence of TR (2% w/v), the enzymatic activity was fully retained. After 1 year of storage, 74% of the enzymatic activity was maintained with the CD stabilizer (10% w/v). The residual activity was maintained as high as 80% for 1 h at 70°C when MC, SC and CD (5% w/v) stabilizers were used. Spray drying with carbohydrates was effective in stabilizing the F. graminearum ß-fructofuranosidase, improved enzymatic properties compared to the soluble enzyme and demonstrated a potential use in future biotechnology applications.


Assuntos
Fusarium/enzimologia , beta-Frutofuranosidase/metabolismo , Carboidratos/química , Dessecação , Estabilidade Enzimática , Excipientes/química , Fusarium/química , beta-Frutofuranosidase/química
3.
Biotechnol Lett ; 35(4): 591-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23242498

RESUMO

The extracellular tannase from Emericela nidulans was immobilized on different ionic and covalent supports. The derivatives obtained using DEAE-Sepharose and Q-Sepharose were thermally stable from 60 to 75 °C, with a half life (t50) >24 h at 80 °C at pH 5.0. The glyoxyl-agarose and amino-glyoxyl derivatives showed a thermal stability which was lower than that observed for ionic supports. However, when the stability to pH was considered, the derivatives obtained from covalent supports were more stable than those obtained from ionic supports. DEAE-Sepharose and Q-Sepharose derivatives as well as the free enzyme were stable in 30 and 50 % (v/v) 1-propanol. The CNBr-agarose derivative catalyzed complete tannic acid hydrolysis, whereas the Q-Sepharose derivative catalyzed the transesterification reaction to produce propyl gallate (88 % recovery), which is an important antioxidant.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Emericella/enzimologia , Enzimas Imobilizadas/metabolismo , Galato de Propila/metabolismo , Hidrolases de Éster Carboxílico/química , Estabilidade Enzimática , Enzimas Imobilizadas/química , Concentração de Íons de Hidrogênio , Taninos/metabolismo , Temperatura
4.
Electron. j. biotechnol ; 15(5): 4-4, Sept. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-657663

RESUMO

Background: Tannases are enzymes that may be used in different industrial sectors as, for example, food and pharmaceutical. They are obtained mainly from microorganisms, as filamentous fungi. However, the diversity of fungi stays poorly explored for tannase production. In this article, Aspergillus ochraceus is presented as a new source of tannase with interesting features for biotechnological applications. Results: Extracellular tannase production was induced when the fungus was cultured in Khanna medium with tannic acid as carbon source. The extracellular tannase was purified 9-fold with 2 percent recovery and a single band corresponding to 85 kDa was observed in SDS-PAGE. The native apparent molecular mass was estimated as 112 kDa. Optima of temperature and pH were 40ºC and 5.0, respectively. The enzyme was fully stable from 40ºC to 60ºC during 1 hr. The activity was enhanced by Mn2+ (33-39 percent) and NH4+ (15 percent). The purified tannase hydrolyzed tannic acid and methyl gallate with Km of 0.76 mM and 0.72 mM, respectively, and Vmax of 0.92 U/mg protein and 0.68 U/mg protein, respectively. The analysis of a partial sequence of the tannase encoding gene showed an open read frame of 567 bp and a sequence of 199 amino acids were predicted. TLC analysis revealed the presence of gallic acid as a tannic acid hydrolysis product. Conclusion: The extracellular tannase produced by A. ochraceus showed distinctive characteristics such as monomeric structure and activation by Mn2+, suggesting a new kind of fungal tannases with biotechnological potential. Further, it was the first time that a partial gene sequence for A. ochraceus tannase was described.


Assuntos
Aspergillus ochraceus/enzimologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Eletroforese , Fermentação , Concentração de Íons de Hidrogênio , Taninos Hidrolisáveis , Reação em Cadeia da Polimerase , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...